NGL-2 Regulates Input-Specific Synapse Development in CA1 Pyramidal Neurons
نویسندگان
چکیده
An important organizing feature of the CNS is that individual neurons receive input from many different sources. Independent regulation of synaptic input is critical for the function and adaptive responses of the nervous system, but the underlying molecular mechanisms are not well understood. We identify the leucine-rich repeat (LRR)-containing protein NGL-2 (Lrrc4) as a key regulator of input-specific synapse development in the hippocampus. Using genetic deletion and shRNA-mediated knockdown, we demonstrate a role for NGL-2 in regulating the strength of synaptic transmission and spine density specifically at Schaffer collateral synapses in the stratum radiatum (SR) in CA1. NGL-2 protein is restricted to SR and spine regulation requires NGL-2's LRR and PDZ-binding domains. Finally, loss of NGL-2 disrupts cooperative interactions between distal and proximal synapses in CA1 pyramidal cells. These results demonstrate that NGL-2 is critical for pathway-specific synapse development and functional integration of distinct inputs.
منابع مشابه
Estradiol Increases Spine Density and NMDA-Dependent Ca Transients in Spines of CA1 Pyramidal Neurons From Hippocampal Slices
Pozzo-Miller, Lucas D., Takafumi Inoue, and Diane Dieuliis Murphy. Estradiol increases spine density and NMDA-dependent Ca transients in spines of CA1 pyramidal neurons from hippocampal slices. J. Neurophysiol. 81: 1404–1411, 1999. To investigate the physiological consequences of the increase in spine density induced by estradiol in pyramidal neurons of the hippocampus, we performed simultaneou...
متن کاملAlterations in dendritic morphology of hippocampal neurons in adult rats after neonatal administration of N-omega-nitro-L-arginine.
The dendritic length and dendritic-spine density of the pyramidal neurons of the prefrontal cortex and the CA1 hippocampus of rats using the nonselective nitric oxide synthase inhibitor N-omega-nitro-L-arginine (L-NNA) at different postnatal day (P) periods of the brain development (P1-P3, P4-P6, and P7-P9) were assessed using Golgi-Cox staining after puberty (P60). At P4-P6, the L-NNA treatmen...
متن کاملElectrophysiological study of amygdale-induced changes in the excitability of CA1 hippocampal pyramidal neurons in male adult rats
Introduction: Many studies have shown that amygdala kindling produces synaptic potentiation by induction of changes in the neuronal electrophysiological properties and inward currents both in epileptic focus and in the areas which are in connection with the epileptic focus and have important role in seizure development and progression such as hippocampal CA1 region. However, cellular mechani...
متن کاملPassive propagation of LTD to stratum oriens-alveus inhibitory neurons modulates the temporoammonic input to the hippocampal CA1 region
Excitatory synaptic activity in horizontal stratum oriens-alveus interneurons (OAIs) is driven by the recurrent collaterals of CA1 pyramidal cells and is strongly influenced by protocols that elicit synaptic plasticity in these principal neurons. Induction of LTD in the Schaffer collateral-CA1 pyramidal neuron synapse causes a passive down-regulation of stratum radiatum-evoked excitatory synapt...
متن کاملM1 and M4 receptors modulate hippocampal pyramidal neurons.
Acetylcholine (ACh), acting at muscarinic ACh receptors (mAChRs), modulates the excitability and synaptic connectivity of hippocampal pyramidal neurons. CA1 pyramidal neurons respond to transient ("phasic") mAChR activation with biphasic responses in which inhibition is followed by excitation, whereas prolonged ("tonic") mAChR activation increases CA1 neuron excitability. Both phasic and tonic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 76 شماره
صفحات -
تاریخ انتشار 2012